The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is
$\frac{1}{3}$
$\frac{{19}}{{54}}$
$\frac{{17}}{{54}}$
$\frac{1}{4}$
The coefficient of $x^{18}$ in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$ is $...........$.
The sum of the binomial coefficients of ${\left[ {2\,x\,\, + \,\,\frac{1}{x}} \right]^n}$ is equal to $256$ . The constant term in the expansion is
Arrange the expansion of $\left(x^{1 / 2}+\frac{1}{2 x^{1 / 4}}\right)^n$ in decreasing powers of $x$.Suppose the coeff icients of the first three terms form an arithmetic progression. Then, the number of terms in the expansion having integer power of $x$ is
The term independent of $x$ in the expansion of ${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ will be
If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$