Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$

  • [IIT 2024]
  • A

    $A,B,C$

  • B

    $A,B$

  • C

    $A,C$

  • D

    $A,B,D$

Similar Questions

Find a positive value of $m$ for which the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6$

If the term independent of $x$ in the exapansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is $k,$ then $18 k$ is equal to

  • [JEE MAIN 2020]

If the coefficient of $x ^{15}$ in the expansion of $\left(a x^3+\frac{1}{b x^{\frac{1}{3}}}\right)^{15}$ is equal to the coefficient of $x^{-15}$ in the expansion of $\left(a x^{\frac{1}{3}}-\frac{1}{b x^3}\right)^{15}$, where $a$ and $b$ are positive real numbers, then for each such ordered pair $(a, b) :$

  • [JEE MAIN 2023]

The coefficient of ${x^5}$ in the expansion of ${(1 + x)^{21}} + {(1 + x)^{22}} + .......... + {(1 + x)^{30}}$ is

If the constant term in the binomial expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is $405,$ then $|k|$ equals 

  • [JEE MAIN 2020]