निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=\frac{n(n-2)}{n+3} ; a_{20}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=20,$ we obtain

$a_{20}=\frac{20(20-2)}{20+3}=\frac{20(18)}{23}=\frac{360}{23}$

Similar Questions

यदि ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ समान्तर श्रेणी में हैं तथा  ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, तो ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $

तीन समान्तर श्रेणियों के $n$ पदों के योगफल${S_1},\;{S_2},\;{S_3}$ हैं जिनके प्रथम पद $1$ और सार्वअन्तर क्रमश: $1, 2, 3$ हैं, तो सत्य सम्बन्ध  होगा

तीन संख्यायें समान्तर श्रेणी में हैं जिनका योगफल $33$ है एवं गुणनफल $792$ है, तो इनमें से सबसे छोटी संख्या है  

माना $S _{ n }$ एक समान्तर श्रेढ़ी के प्रथम $n$ पदों के योग को दर्शाता है। यदि $S_{4}=16$ तथा $S_{6}=-48$ है, तो $S_{10}$ बराबर है

  • [JEE MAIN 2019]

किन्हीं तीन धनात्मक वास्तविक संख्याओं $a, b$ तथा $c$ के लिए $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ है, तो:

  • [JEE MAIN 2017]