જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $tan^{-1}x, tan^{-1}y$ અને $tan^{-1}z$ પણ સમાંતર શ્રેણીમાં હોય, તો......
જો કોઈ સમાંતર શ્રેણી માટે $p^{th}$ અને $q^{th}$ પદ માટેનો સમાંતર મધ્યક તે જ શ્રેણીના $r^{th}$ અને $s^{th}$ ના સમાંતર મધ્યક જેટલો થાય તો $p + q$ ની કિમત મેળવો.
જો $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ સમાંતર શ્રેણીમાં હોય તો સાબિત કરો કે $a, b, c$ સમાંતર શ્રેણીમાં છે.
જો $\frac{1}{{b\, + \,c}},\,\frac{1}{{c\, + \,a}},\,\frac{1}{{a\, + \,b}}$ સમાંતર શ્રેણીમાં હોય, તો $a^2, b^2, c^2$ કઈ શ્રેણીમાં હશે ?
જો સમાંતર શ્રેણીના $p$ પદોનો સરવાળો તેના $q$ પદોના સરવાળા જેટલો હોય, તો તેના $(p +q)$ પદોનો સરવાળો કેટલો થશે ?