$\frac{3}{5}$ और $\frac{4}{5}$ के बीच पाँच परिमेय संख्याएँ ज्ञात कीजिए।
There are infinite rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$
$\frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}$
$\frac{4}{5}=\frac{4 \times 6}{5 \times 6}=\frac{24}{30}$
Therefore, $5$ rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$ (i.e. $\frac{18}{30}$ $ \frac{24}{30})$ are
$\frac{19}{30}, \,\frac{20}{30},\, \frac{21}{30}, \,\frac{22}{30},\, \frac{23}{30}$
निम्नलिखित के हरों का परिमेयकरण कीजिए
$(i)$ $\frac{1}{\sqrt{7}}$
$(ii)$ $\frac{1}{\sqrt{7}-\sqrt{6}}$
$(iii)$ $\frac{1}{\sqrt{5}+\sqrt{2}}$
$(iv)$ $\frac{1}{\sqrt{7}-2}$
$\frac{p}{q}(q \neq 0)$ के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ $p$ और $q$ पूर्णाक
हैं , जिनका $1$ के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण ( प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि $q$ को कौन-सा गुण अवश्य संतुष्ट करना चाहिए ?
दिखाइए कि $0.2353535 \ldots=0.2 \overline{35}$ को $\frac{p}{q}$ के रूप में व्यक्त कर सकते हैं, जहाँ $p$ और $q$ पूणांक हैं और $q \neq 0$ है।
निम्नलिखित व्यंजकों को सरल कीजिए
$(i)$ $(5+\sqrt{7})(2+\sqrt{5})$
$(ii)$ $(5+\sqrt{5})(5-\sqrt{5})$
$(iii)$ $(\sqrt{3}+\sqrt{7})^{2}$
$(iv)$ $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$
निम्नलिखित व्यंजकों में से प्रत्येक व्यंजक को सरल कीजिए
$(i)$ $(3+\sqrt{3})(2+\sqrt{2})$
$(ii)$ $(3+\sqrt{3})(3-\sqrt{3})$
$(iii)$ $(\sqrt{5}+\sqrt{2})^{2}$
$(iv)$ $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$