કિમત શોધો :
$(i)$ $64^{\frac{1}{2}}$
$(ii)$ $32^{\frac{1}{5}}$
$(iii) $ $125^{\frac{1}{3}}$
$(i)$ $(64)^{\frac{1}{2}}=\left(8^{2}\right)^{\frac{1}{2}}=8^{2 \times \frac{1}{2}}=8$
$(ii)$ $32^{\frac{1}{5}}=\left(2^{5}\right)^{\frac{1}{5}}=2^{5 \times \frac{1}{5}}=2^{1}=2$
$(iii)$ $125^{\frac{1}{3}}=\left(5^{3}\right)^{\frac{1}{3}}=5^{3 \times \frac{1}{3}}=5$
નીચેના વિધાનો સત્ય છે કે અસત્ય ? કારણ સહિત ઉત્તર આપો.
$(i)$ દરેક પૂર્ણ સંખ્યા એ પ્રાકૃતિક સંખ્યા છે.
$(ii)$ દરેક પૂર્ણાક એ સંમેય સંખ્યા છે.
$(ii)$ દરેક સંમેય સંખ્યા એ પૂર્ણાક છે.
નીચેની સંખ્યાઓનું સંમેય અને અસંમેય સંખ્યાઓમાં વર્ગીકરણ કરો.
$(i)$ $\sqrt{23}$
$(ii)$ $\sqrt{225}$
$(iii)$ $0.3796$
$(iv)$ $7.478478 \ldots$
$(v)$ $1.101001000100001 \ldots$
શું શૂન્ય એ એક સંમેય સંખ્યા છે ? શું તમે તેને $p$ પૂર્ણાક તથા $q$ શૂન્યેતર પૂર્ણાક હોય તેવા $p$, $q$ માટે $\frac{p}{q}$ સ્વરૂપમાં લખી શકશો ?
$\frac{1}{17}$ ની દશાંશ-અભિવ્યક્તિમાં પુનરાવર્તિત અંકોની સંખ્યા વધુમાં વધુ કેટલી હશે ?
તમે જાણો છો કે $\frac{1}{7}=0 . \overline{142857}$ છે. શું તમે ખરેખર ભાગાકારની લાંબી પ્રક્રિયા કર્યા વગર $\frac{2 }{7},\, \frac{3}{7}$, $\frac{4}{7},\, \frac{5}{7}, \,\frac{6}{7}$ ની દશાંશ-અભિવ્યક્તિ શું મળશે તેનું અનુમાન કરી શકશો ? જો હા, તો કેવી રીતે ?