Factorise :

$1+64 x^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have,

$1+64 x^{3}=(1)^{3}+(4 x)^{3}$

$=(1+4 x)\left\{(1)^{2}-(1)(4 x)+(4 x)^{2}\right\}$ $\left[\because a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]$

$=(1+4 x)\left(1-4 x+16 x^{2}\right)$

$=(1+4 x)\left(16 x^{2}-4 x+1\right)$

$=(4 x+1)\left(16 x^{2}-4 x+1\right)$

Similar Questions

Find the zero of the polynomial in each of the following cases

$q(y)=\pi y+3.14$

Factorise the following quadratic polynomials by splitting the middle term

$15 x^{2}+7 x-2$

Find the quotient and the remainder when $2 x^{2}-7 x-15$ is divided by

$2 x+1$

Expand the following:

$\left(\frac{1}{x}+\frac{y}{3}\right)^{3}$

Without finding the cubes, factorise

$(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$