Without finding the cubes, factorise

$(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $x-2 y=a, 2 y-3 z=b$ and $3 z-c=x$

$\therefore \quad a+b+c=x-2 y+2 y-3 z+3 z-x=0$

$\Rightarrow \quad a^{3}+b^{3}+c^{3}=3 a b c$

Hence, $(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$

$=3(x-2 y)(2 y-3 z)(3 z-x)$

Similar Questions

Divide $p(x)=x^{3}+7 x^{2}+14 x+1$ by $x+3$ and find the quotient and the remainder.

Which of the following expressions is a polynomial, state the reason ? If an expression is polynomial, state whether it is a polynomial in one variable or not

$5 x^{2}+11 x-2 \sqrt{x}$

Factorise the following quadratic polynomials by splitting the middle term

$x^{2}-3 x-40$

 

On dividing $p(x)=2 x^{3}-3 x^{2}+a x-3 a+9$ by $(x+1),$ if the remainder is $16,$ then find the value of $a$. Then, find the remainder on dividing $p(x)$ by $x+2$

Write whether the following statements are True or False. Justify your answer.

$\frac{6 \sqrt{x}+x^{\frac{3}{2}}}{\sqrt{x}}$ is a polynomial, $x \neq 0$