Without finding the cubes, factorise $(x-y)^{3}+(y-z)^{3}+(z-x)^{3} .$
Expand
$(x+4)(x+9)$
If $p(x)=x^{2}-4 x+3,$ evaluate $: p(2)-p(-1)+p\left(\frac{1}{2}\right)$
For the polynomial $p(x),$ if $p(7)=0,$ then .......... is a factor of $p(x)$.
State whether each of the following statements is true or false
$x^{2}-5 x+4$ is a linear polynomial.