Check whether the polynomial

$p(x)=x^{3}+9 x^{2}+26 x+24$ is a multiple of $x+2$ or not.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$p(x)$ will be a multiple of $x+2,$ only if $x+2$ divides $p(x)$ leaving remainder zero.

Now, taking $x+2=0,$ we have $x=-2$

Also, $p(-2)=(-2)^{3}+9(-2)^{2}+26(-2)+24$

$=(-8)+9(4)-52+24$

$=-8+36-52+24$

$=-60+60$

$=0$

So, the remainder obtained on dividing $p(x)$ by $x+2$ is $0 .$

So, $(x+2)$ is a factor of the given polynomial $p(x),$ that is $p(x)$ is a multiple of $x+2$

Similar Questions

Factorise :

$2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$

Factorise

$9 x^{2}-21 x y+10 y^{2}$

Evaluate

$(65)^{2}$

Without actually calculating the cubes, find the value of each of the following

$(31)^{3}-(16)^{3}-(15)^{3}$

Write whether the following statements are True or False. Justify your answer.

$\frac{1}{\sqrt{5}} x^{\frac{1}{2}}+1$ is a polynomial