Check whether the polynomial
$p(x)=x^{3}+9 x^{2}+26 x+24$ is a multiple of $x+2$ or not.
$p(x)$ will be a multiple of $x+2,$ only if $x+2$ divides $p(x)$ leaving remainder zero.
Now, taking $x+2=0,$ we have $x=-2$
Also, $p(-2)=(-2)^{3}+9(-2)^{2}+26(-2)+24$
$=(-8)+9(4)-52+24$
$=-8+36-52+24$
$=-60+60$
$=0$
So, the remainder obtained on dividing $p(x)$ by $x+2$ is $0 .$
So, $(x+2)$ is a factor of the given polynomial $p(x),$ that is $p(x)$ is a multiple of $x+2$
Factorise :
$2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$
Factorise
$9 x^{2}-21 x y+10 y^{2}$
Evaluate
$(65)^{2}$
Without actually calculating the cubes, find the value of each of the following
$(31)^{3}-(16)^{3}-(15)^{3}$
Write whether the following statements are True or False. Justify your answer.
$\frac{1}{\sqrt{5}} x^{\frac{1}{2}}+1$ is a polynomial