Show that $1.272727 \ldots=1 . \overline{27}$ . can be expressed in the form $\frac {p }{q }$, where $p$ and $q$ are integers and $q \ne 0$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $x=1.272727 \ldots$ since two digits are repeating, we multiply $x$ by $100$ to get

$100 x=127.2727 \ldots$

So,                   $100 x=126+1.272727 \ldots=126+x$

Therefore,         $100 x-x=126,$   i.e.,  $99 x=126$

i.e.,                      $x=\frac{126}{99}=\frac{14}{11}$

You can check the reverse that $\frac{14}{11}=1 . \overline{27}$

Similar Questions

Classify the following numbers as rational or irrational :

$(i)$ $2-\sqrt{5}$

$(ii)$ $(3+\sqrt{23})-\sqrt{23}$

$(iii)$ $\frac{2 \sqrt{7}}{7 \sqrt{7}}$

$(iv)$ $\frac{1}{\sqrt{2}}$

$(v)$ $2 \pi$

Add $2 \sqrt{2}+5 \sqrt{3}$ and $\sqrt{2}-3 \sqrt{3}$

Find the decimal expansions of $\frac{10}{3},\, \frac{7}{8}$ and $\frac{1}{7}$.

Rationalise the denominator of $\frac{1}{\sqrt{2}}$.

Express $0.99999 \ldots$ in the form $\frac{p}{q}$. Are you surprised by your answer ? With your teacher and classmates discuss why the answer makes sense.