જો $\alpha , \beta , \gamma$ એ સમીકરણ $x^3 + qx -r = 0$ ના ઉકેલો હોય તો ક્યાં સમીકરણના ઉકેલો $\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$ થાય ?
$(r + 1)x^3 -q(r + 1)x^2 -r^3 = 0$
$rx^3 -q(r + 1)x^2 -(r + 1)^3 = 0$
$x^3 + qx -r = 0$
None of these
કોઇ એક ધન પૂર્ણાંક $n$ માટે ,જો દ્વિઘાત સમીકરણ $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ ને બે ક્રમિક પૂર્ણાંક ઉકેલો હોય તો ,$n$ ની કિંમત મેળવો.
જો $x,\;y,\;z$ એ વાસ્તવિક અને ભિન્ન હોય તો $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ એ હંમેશા . . .
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
જો $x$ અને $y$ વાસ્તવિક હોય, તો નીચેનામાંથી કયું સાચું હોય ?
જો $P(x) = x^3 - ax^2 + bx + c$ જ્યાં $a, b, c \in R$ ને પૂર્ણાક ઉકેલો મળે કે જેથી $P(6) = 3$, થાય તો $' a '$ ની કિમત ......... શક્ય નથી