કિંમત શોધો :
$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$
$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$
$=\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$=\frac{5\left(\frac{1}{4}\right)+\left(\frac{16}{3}\right)-1}{\frac{1}{4}+\frac{3}{4}}$
$=\frac{\frac{15+64-12}{12}}{\frac{4}{4}}=\frac{67}{12}$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
કિંમત શોધો :
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
કિંમત શોધો :
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=.......$
નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
જેમ-જેમ $\theta$ નું મૂલ્ય વધે, તેમ તેમ $\cos \theta$ નું મૂલ્ય વધે છે.