मूल बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची स्पर्श रेखायुग्म का समीकरण है
$gx + fy + c({x^2} + {y^2})$
${(gx + fy)^2} = {x^2} + {y^2}$
${(gx + fy)^2} = {c^2}({x^2} + {y^2})$
${(gx + fy)^2} = c({x^2} + {y^2})$
माना वृत्त $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}+10 \mathrm{y}-15=0$ के बिन्दु $\mathrm{A}(4,-11)$ व $\mathrm{B}(8,-5)$ पर खींची गई स्पर्श रेखाएँ बिन्दु $\mathrm{C}$ पर मिलती है। उस वृत्त, जिसका केन्द्र $\mathrm{C}$ हैं एवं $\mathrm{A}$ व $\mathrm{B}$ को मिलाने वाली रेखा जिसकी स्पर्श रेखा है की त्रिज्या है:
वृत्त ${x^2} + {y^2} - 8x - 2y + 12 = 0$ के उन बिन्दुओं पर जिसकी कोटि $-1$ है, अभिलम्ब के समीकरण होंगे
यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा हो, तो स्पर्श बिन्दु होगा
वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है
रेखा $3x + 4y = 1$ के समान्तर वृत्त $5{x^2} + 5{y^2} = 1$ की स्पर्श रेखा का समीकरण है