वैद्युत क्षेत्र ${r^o}$ के साथ परिवर्तित होता है

  • A

    एक वैद्युत द्विध्रुव के कारण

  • B

    एक बिन्दु आवेश के कारण

  • C

    आवेश एक अनंत चादर के कारण

  • D

    अनंत लम्बाई के रेखीय आवेश के कारण

Similar Questions

एक ठोस धात्विक गोले पर $ + \,3Q$ आवेश है। इस गोले के संकेन्द्रीय एक चालक गोलीय कोश है जिस पर आवेश $ - Q$ है। गोले की त्रिज्या $a$ तथा गोलीय कोश की त्रिज्या $b(b < a)$ है। केन्द्र से $R$ दूरी पर $(a < R < b)$ विद्युत क्षेत्र कितना है

एक बिन्दु आवेश $Q$, एक एकसमान रेखीय आवेश घनत्व (Linear charge density) $\lambda$ वाले अनन्त लम्बाई तके तार तथा एक एकसमान पृष्ठ आवेश घनत्व (uniform surface charge density) $\sigma$ वाले अनन्त समतल चादर के कारण $r$ दूरी पर विद्युत क्षेत्र की तीव्रतायें क्रमश: $E_1(r), E_2(r)$ तथा $E_3(r)$ हैं यदि एक दी गई दूरी $r_0$ पर $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ तब

  • [IIT 2014]

माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें

  • [JEE MAIN 2023]

त्रिज्या $'a'$ तथा $'b'$ के दो एक-केन्द्री गोलों (चित्र देखिये) के बीच के स्थान में आयतन आवेश-घनत्व $\rho=\frac{A}{r}$ है, जहाँ $A$ स्थिरांक है तथा $r$ केन्द्र से दूरी है। गोलों के केन्द्र पर एक बिन्दु-आवेश $Q$ है। $'A'$ का वह मान बताये जिससे गोलों के बीच के स्थान में एकसमान वैध्युत-क्षेत्र हो:

  • [JEE MAIN 2016]

केन्द्र से $\mathrm{r}$ दूरी के साथ $\mathrm{R}$ त्रिज्या के एक एकसमान आवेशित कुचालक ठोस गोले के कारण वैद्युत क्षेत्र का अभिरेखीय परिवर्तन निम्न प्रकार प्रंदर्शित है:

  • [JEE MAIN 2023]