$1$ मिलीमीटर त्रिज्या के सीधे लम्बे तार पर एकसमान आवेश वितरित है। तार पर प्रति सेमी. लम्बाई आवेश $Q$ कूलॉम है। अन्य बेलनाकार पृष्ठ जिसकी त्रिज्या $50$ सेमी. तथा लम्बाई $1$ मीटर है चित्रानुसार सममिति रूप से तार को घेरता है। बेलनाकार पृष्ठ से गुजरने वाला कुल विद्युत फ्लक्स है
$\frac{Q}{{{\varepsilon _0}}}$
$\frac{{100Q}}{{{\varepsilon _0}}}$
$\frac{{10Q}}{{(\pi {\varepsilon _0})}}$
$\frac{{100Q}}{{(\pi {\varepsilon _0})}}$
नीचे दो कथन दिए गए है, एक को अभिकथन $A$ एवं दूसरे को कारण $\mathrm{R}$ कहा गया है
अभिकथन $\mathrm{A}$ : यदि $30 \times 10^{-5} \mathrm{Cm}$ द्विध्रुव आघूर्ण वाला एक विद्युत द्विध्रुव, किसी बंद पृष्ठ से घिरा है, तो पृष्ठ
से निकलने वाले कुल फ्लक्स का मान शून्य होगा।
कारण $R$ : विद्युत द्विध्रुव में दो समान एवं विपरीत आवेश होते हैं।
उपर्युक्त कथनों के प्रकाश में, नीचे दिए गए विकल्पों में से सही उत्तर चुनें।
निम्न चित्र में गॉसियन सतह $A$ द्वारा घेरे गये आवेशों के कारण इससे निर्गत फ्लक्स होगा (दिया है $q_1$ = $-14 \,nC$, $q_2$ = $78.85 \,nC$, $q_3$ = $-56 \,nC$)
किसी दिए गए तल के लिए ‘गॉस का नियम’ इस प्रकार लिखते हैं इससे हम यह निष्कर्ष निकाल सकते हैं कि
चार बंद पृष्ठ तथा उनके आवेश विन्यास को निम्न चित्र में दर्शाया गया है।
यदि उनके पृष्ठ से बद्ध वैद्युत फ्लक्स क्रमशः $\Phi_{1}, \Phi_{2^{\prime}} \Phi_{3}$ तथा $\Phi_{4}$ हों तो
चित्र में दिखाये गये बक्से से होकर विधुत क्षेत्र $\overrightarrow{ E }=4 xi -\left( y ^{2}+1\right) \hat{ j } N / C$ निकलता है। यदि बक्से के $ABCD$ तथा $BCGF$ समतलों में से होकर जाने वाले फ्लक्स का मान क्रमश: $\phi_{ I }$ तथा $\phi_{ II }$ है तब इनमें अन्तर $\left(\phi_{ I }-\phi_{ II }\right)$ $\left( Nm ^{2} / C \right)$ में होगा $......$