Determine which of the following polynomials has $(x + 1)$ a factor : $x^{4}+3 x^{3}+3 x^{2}+x+1$.
For $x+1=0,$ we have $x=-1$.
$\therefore $ The zero of $x+1$ is $-1$.
$\because$ $p ( x )= x ^{4}+3 x ^{3}+3 x ^{2}+ x +1$
$\therefore$ $p (-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$
$=(1)+3(-1)+3(1)+(-1)+1 \div 1-3,+3-.1+1$
$=1 \neq 0$
$\because$ $f (-1) \neq 0$
$\therefore$ $(x+1)$ is not a factor of $x^{4}+3 x^{3}+3 x^{2}+x+1$.
Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.
Find the degree of each of the polynomials given below : $2$
Factorise : $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=k x^{2}-3 x+k$