Determine which of the following polynomials has $(x + 1)$ a factor : $x^{4}+3 x^{3}+3 x^{2}+x+1$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

For $x+1=0,$ we have $x=-1$.

$\therefore $ The zero of $x+1$ is $-1$.

$\because$  $p ( x )= x ^{4}+3 x ^{3}+3 x ^{2}+ x +1$

$\therefore$  $p (-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$

                             $=(1)+3(-1)+3(1)+(-1)+1 \div 1-3,+3-.1+1$

                              $=1 \neq 0$

            $\because$ $f (-1) \neq 0$

$\therefore$ $(x+1)$ is not a factor of $x^{4}+3 x^{3}+3 x^{2}+x+1$.

Similar Questions

Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.

Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.

Find the degree of each of the polynomials given below : $2$

Factorise : $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=k x^{2}-3 x+k$