Find the degree of each of the polynomials given below : $2$
$5$
$1$
$0$
$2$
Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
Find the zero of the polynomial : $p(x) = 2x + 5$
Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.
Find the remainder obtained on dividing $p(x)=x^3+1$ by $x+1$.
Factorise : $2 y^{3}+y^{2}-2 y-1$