જો $X = \{ 1,\,2,\,3,\,4,\,5\} $ અને $Y = \{ 1,\,3,\,5,\,7,\,9\} $ તો નીચેના પૈકી . . . એ $X$ થી $Y$ પરનો સંબંધ ર્દશાવે.
જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, જો $(a, b) \in R$ તો $(b, a) \in R$
જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ નો વિસ્તાર મેળવો.
$A=\{1,2,3,5\}$ અને $B=\{4,6,9\} .$ $R = \{ (x,y):$ $x$ અને $y$ નો તફાવત અયુગ્મ સંખ્યા છે ${\rm{; }}x \in A,y \in B\} $ થાય - તે રીતે સંબંધ $A$ થી $B$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો.
જો $A=\{1,2,3,4,5,6\}$, $R=\{(x, y): y=x+1\}$ થાય તે રીતે સંબંધ $R, A$ થી $A$ પર વ્યાખ્યાયિત છે, તો આ સંબંધને કિરણ આકૃતિ દ્વારા દર્શાવો.