જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, જો $(a, b) \in R$ તો $(b, a) \in R$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a, b) \in R$ implies that $a-b \in Z .$ So, $b-a \in Z .$ Therefore $(b, a) \in R$

Similar Questions

જો $A=\{1,2,3,4,5,6\}$, $R=\{(x, y): y=x+1\}$ થાય તે રીતે સંબંધ $R, A$ થી $A$ પર વ્યાખ્યાયિત છે, તો આ સંબંધને કિરણ આકૃતિ દ્વારા દર્શાવો.

જો $A=\{x, y, z\}$ અને $B=\{1,2\}$ તો $A$ થી $B$ ના સંબંધોની સંખ્યા શોધો.

આકૃતિમાં $P$ થી $Q$ નો સંબંધ દર્શાવેલ છે. આ સંબંધને યાદીની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે ?

આકૃતિમાં $P$ થી $Q$ નો સંબંધ દશાવેલ છે. આ સંબંધને યાદીની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે?

$A=\{1,2,3,5\}$ અને $B=\{4,6,9\} .$ $R = \{ (x,y):$ $x$ અને $y$ નો તફાવત અયુગ્મ સંખ્યા છે ${\rm{; }}x \in A,y \in B\} $ થાય - તે રીતે સંબંધ $A$ થી $B$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો.