જો $X = \{ 1,\,2,\,3,\,4,\,5\} $ અને $Y = \{ 1,\,3,\,5,\,7,\,9\} $ તો નીચેના પૈકી . . . એ $X$ થી $Y$ પરનો સંબંધ ર્દશાવે.
${R_1} = \{ (x,\,y)|y = 2 + x,\,x \in X,\,y \in Y\} $
${R_2} = \{ (1,\,1),\,(2,\,1),\,(3,\,3),\,(4,\,3),\,(5,\,5)\} $
${R_3} = \{ (1,\,1),\,(1,\,3)(3,\,5),\,(3,\,7),\,(5,\,7)\} $
(B) અને (C) બંને
આકૃતિમાં $P$ થી $Q$ નો સંબંધ દર્શાવેલ છે. આ સંબંધને યાદીની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે ?
$R$ એ $N$ થી $N$ નો સંબંધ છે. $R = \{ (a,b):a,b \in N$ અને $a = {b^2}\} $ થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે? જો $(a, b) \in R ,(b, c) \in R$ તો $(a, c) \in R$ પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
આકૃતિમાં $P$ થી $Q$ નો સંબંધ દશાવેલ છે. આ સંબંધને ગુણધર્મની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે?
જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, જો $(a, b) \in R$ અને $(b, c) \in R$ તો $(a, c) \in R$
જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ ને યાદીની રીતે લખો.