જે શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $n$ પદો માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો
$\begin{array}{|c|c|c|} \hline x_{i} & x_{i}-a & \left(x_{i}-a\right)^{2} \\ \hline a & 0 & 0 \\ \hline a+d & d & d^{2} \\ \hline a+2 d & 2 d & 4 d^{2} \\ \hline \end{array}$
$\begin{array}{|c|c|c|} \hline \ldots & \ldots & 9 d^{2} \\ \hline \ldots & \ldots & \ldots \\ \hline \ldots & \ldots & \ldots \\ \hline a+(n-1) d & (n-1) d & (n-1)^{2} d^{2} \\ \hline \Sigma x_{i}=\frac{n}{2}[2 a+(n-1) d ] & & \\ \hline \end{array}$
$\text { Mean }=\frac{\Sigma x_{i}}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]=a+\frac{(n-1)}{2} d\right.$
$\Sigma\left(x_{i}-a\right)=d[1+2+3+\ldots+(n-1) d]=d \frac{(n-1) n}{2}$
and $\quad \Sigma\left(x_{i}-a\right)^{2}=d^{2} \cdot\left[1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}\right]=\frac{d^{2} n(n-1)(2 n-1)}{6}$
$\sigma=\sqrt{\frac{\left(x_{i}-a\right)^{2}}{n}-\left(\frac{x_{i}-a}{n}\right)^{2}}$
$=\sqrt{\frac{d^{2} n(n-1)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^{2}}=\sqrt{\frac{d^{2}(n-1)(2 n-1)}{6}-\frac{d^{2}(n-1)^{2}}{4}}$
$=d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)=d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]}}$
${2 \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{n^{2}-1}{12}}}$
નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
વર્ગ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
આપેલ આવૃતિ વિતરણ :
ચલ $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
આવૃતિ $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે
નીચે આપેલ માહિતી માટે મધયક અને વિચરણ મેળવો
$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =
જો $x_1,x_2,.........,x_{100}$ એ $100$ અવલોકનો એવા છે કે જેથી $\sum {{x_i} = 0,\,\sum\limits_{1 \leqslant i \leqslant j \leqslant 100} {\left| {{x_i}{x_j}} \right|} } = 80000\,\& $ મધ્યકથી સરેરાશ વિચલન $5$ હોય તો પ્રમાણિત વિચલન મેળવો.