$n$ का मान निकालिए, यदि
${ }^{2 n} C _{2}:{ }^{n} C _{2}=12: 1$
$\frac{{^{2n}{C_3}}}{{^n{C_3}}} = \frac{{12}}{1}$
$\Rightarrow \frac{(2 n) !}{3 !(2 n-3) !} \times \frac{3 !(n-3) !}{n !}=\frac{12}{1}$
$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3) !}{(2 n-3) !} \times \frac{(n-3) !}{n(n-1)(n-2)(n-3) !}=12$
$\Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=12$
$\Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=12$
$\Rightarrow \frac{(2 n-1)}{(n-2)}=3$
$\Rightarrow 2 n-1=3(n-2)$
$\Rightarrow 2 n-1=3 n-6$
$\Rightarrow 3 n-2 n=-1+6$
$\Rightarrow n=5$
$5$ व्यंजन और $4$ स्वरों में से $3$ व्यंजन और $2$ स्वरों को लेकर कितने भिé शब्द बनाये जा सकते हैं
$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
चार पत्ते चार, भिन्न प्रकार $(suit)$ के हैं ?
एक महिला अपने $6$ अतिथियों को रात्रिभोज पर आमंत्रित करती है, वह $10$ मित्रों में से उन अतिथियों को कुल कितने प्रकार से आमंत्रित कर सकती है, जबकि कोई दो मित्र एक साथ रात्रिभोज में न आयें
यदि $a , b$ तथा $c$ क्रमश: ${ }^{19} C _{ p },{ }^{20} C _{ q }$ तथा ${ }^{21} C _{ r }$ के अधिकतम मान हैं, तो
$20$ एक रूपए के सिक्कों, $10$ पचास पैसे के सिक्कों, तथा $7$ बीस पैसे के सिक्कों, में से $6$ सिक्कों के चयन की प्रक्रिया कितने प्रकार से की जा सकती है