Determine $n$ if

$^{2 n} C_{3}:\,^{n} C_{3}=12: 1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{{^{2n}{C_3}}}{{^n{C_3}}} = \frac{{12}}{1}$

$\Rightarrow \frac{(2 n) !}{3 !(2 n-3) !} \times \frac{3 !(n-3) !}{n !}=\frac{12}{1}$

$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3) !}{(2 n-3) !} \times \frac{(n-3) !}{n(n-1)(n-2)(n-3) !}=12$

$\Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=12$

$\Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=12$

$\Rightarrow \frac{(2 n-1)}{(n-2)}=3$

$\Rightarrow 2 n-1=3(n-2)$

$\Rightarrow 2 n-1=3 n-6$

$\Rightarrow 3 n-2 n=-1+6$

$\Rightarrow n=5$

Similar Questions

Find the number of ways in which two Americans, two British, One Chinese, One Dutch and one Egyptian can sit on a round table so that person of the same nationality are separated?

In how many ways a team of $11$ players can be formed out of $25$ players, if $6$ out of them are always to be included and $5$ are always to be excluded

$6$ different letters of an alphabet are given. Words with four letters are formed from these given letters. Then the number of words which have atleast one letter repeated and no two same letters are together, is

The least value of a natural number $n$ such that $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, where $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}, i$

  • [KVPY 2017]

$^n{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}} = $