प्रत्येक स्प्रंंग नियतांक $k$ वाली दो एकजैसी स्प्रिंगों पर विचार कीजिये जिनका द्रव्यमान चित्र$-1$ के अनुसार द्रव्यमान $m$ की तुलना में नगण्य है। चित्र में एक स्प्रिंग को तथा चित्र$-2$ में इनके श्रेणी संयोजन को दर्शाया गया है। दोनों सरल आवर्त गतियों के दोलनों का अनुपात $\frac{ T _{ b }}{ T _{ a }}=\sqrt{ x }$ है, जहाँ $x$ का मान है। (निकटतम पूर्णांक में)
$3$
$2$
$6$
$4$
एक द्रव्यमान $m$ को ${K_1}$ व ${K_2}$ बल नियतांक वाली दो स्प्रिंगों से अलग-अलग लटकाने पर इनकी सरल आवर्त गतियों के आवर्तकाल क्रमश: ${t_1}$ व ${t_2}$ हैं। यदि उसी द्रव्यमान $m$ को चित्रानुसार दोनों स्प्रिंगों से लटकाया जाये तो इसकी सरल आवर्त गति के आवर्तकाल $t$ के लिए सही सम्बन्ध है
एक $6.4\, N$ के बल द्वारा एक ऊध्र्वाधर स्प्रिंग की लम्बाई में $0.1 \,m$ की वृद्धि होती है। ऊध्र्वाधर स्प्रिंग से कितना .... $kg$ द्रव्यमान लटकाया जाये ताकि यह $\left( {\frac{\pi }{4}} \right)sec$ के आवर्तकाल से दोलन करे
दिए गए चित्रानुसार, $K$ और $2\,K$ स्प्रिंग स्थिरांक वाली दो स्प्रिंगें द्रव्यमान $m$ से जुड़ी हैं। यदि चित्र $(a)$ में दोलन काल $3\,s$ है, तो चित्र $(b)$ में दोलन काल $\sqrt{ x } s$. होगा। जहाँ $x$ का मान $..........$ है।
एक स्प्रिंग से लटकाये गये किसी कण का आवर्तकाल $T$ है। यदि स्प्रिंग को चार बराबर भागों में काटकर उसी द्रव्यमान को किसी एक भाग से लटका दें तो नया आवर्तकाल होगा
जब एक स्प्रिंग् पर $0.50$ किग्रा का भार लटकाया जाता है तब उसमें विस्थापन $0.20$ मीटर का हो जाता है। यदि इस स्प्रिंग् पर $0.25$ किग्रा का भार लटकाया जाये तो इसके दोलनों की आवृत्ति.... $\sec$ होगी $(g = 10$ मी/सै$^{2}$)