एक $6.4\, N$ के बल द्वारा एक ऊध्र्वाधर स्प्रिंग की लम्बाई में $0.1 \,m$ की वृद्धि होती है। ऊध्र्वाधर ​स्प्रिंग से कितना .... $kg$ द्रव्यमान लटकाया जाये ताकि यह $\left( {\frac{\pi }{4}} \right)sec$ के आवर्तकाल से दोलन करे

  • A

    $\left( {\frac{\pi }{4}} \right)$

  • B

    $1$

  • C

    $\left( {\frac{1}{\pi }} \right)$

  • D

    $10$

Similar Questions

दिये गये चित्र में $\mathrm{M}$ द्रव्यमान के गुटके की सरल आवर्त गति का आवर्तकाल $\pi \sqrt{\frac{\alpha \mathrm{M}}{5 \mathrm{~K}}}$ है, जहाँ $\alpha$ का मान. . . . . . . . . . है।

  • [JEE MAIN 2024]

दो स्प्रिंगों के बल नियतांक ${K_1}$ तथा ${K_2}$ हैं। उन्हें क्रमश: ${F_1}$ तथा ${F_2}$ बलों से इस प्रकार खींचा जाता है कि उनकी प्रत्यास्थ ऊर्जा बराबर हो, तो ${F_1}:{F_2}$ है

समान द्रव्यमान $0.1\, kg$ वाली दो एक सामन गेंदे $A$ तथा $B$ दो एक समान एवं द्रव्यमान विहीन स्प्रिंगों से जुड़ी है। यह ​स्प्रिंग द्रव्यमान निकाय किसी दृढ़, चिकने वृत्तीय एवं क्षैतिज तल में स्थित पाइप में स्थित है जैसा कि दिखाया गया है। दोनों गेंदों के केन्द्र $0.06\, m$ त्रिज्या के वृत्तीय पथ पर घूमते है। प्रत्येक स्प्रिंग की वास्तविक लम्बाई  $0.06\pi\, m$ एवं स्प्रिंग नियतांक $0.1\,N/m$ हैं प्रारम्भ में दोनों गेंदें व्यास $PQ$ के सापेक्ष $\theta  = \pi /6$ रेडियन कोण से विस्थपित की जाती है। मुक्त करने पर गेंद $B$ के दोलनों की आवृत्ति होगी   

$M_1$और $M_2$ दो द्रव्यमान $K$ नियतांक वाली किसी द्रव्यमान विहीन स्प्रिंग से चित्र में दिखाये अनुसार लटके हैं। संतुलन की अवस्था में, निकाय को प्रभावित न करके यदि $M_1$ को धीरे से हटा लिया जाये तो दोलन का आयाम होगा

चित्र $(A)$ में $k$ स्प्रिंग स्थिरांक वाली दो स्प्रिंगों से जुड़े ' $m$ ' द्रव्यमान के साथ ' $2\,m$ ' द्रव्यमान जुड़ा हुआ है। चित्र $(B)$ में, क्रमशः ' $k$ ' एवं ' $2\,k$ ' स्प्रिंग स्थिरांक वाली दो स्प्रिंगों से दव्यमान ' $m$ ' जुड़ा हुआ है। यदि द्रव्यमान ' $m$ ' को $(A)$ एवं $(B)$ में ' $x$ ' क्षैतिज दूरी से विस्थापित करके छोड़ दिया जाता है, तो चित्र $(A)$ एवं $(B)$ के क्रमशः आवर्तकाल $T _1$ एवं $T_2$ निम्न सम्बंध द्वारा निरूपित होंगे :

  • [JEE MAIN 2022]