Consider the following statements :
$P$ : Suman is brilliant
$Q$ : Suman is rich.
$R$ : Suman is honest
the negation of the statement
"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as
$ \sim Q \leftrightarrow \, \sim P \vee R$
$ \sim Q \leftrightarrow \, \sim P \wedge R$
$ \sim Q \leftrightarrow P\, \vee \sim R$
$ \sim Q \leftrightarrow P\, \wedge \sim R$
If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:
The logically equivalent of $p \Leftrightarrow q$ is :-
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is
The contrapositive of the statement "I go to school if it does not rain" is