Consider the following relations :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
which of these is/are correct
$1$ and $3$
$2$ only
$2$ and $3$
$1$ and $2$
Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\} .$ Find $A-B$ and $B-A$
Let $A$ and $B$ be two sets in the universal set. Then $A - B$ equals
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $B \cap C$
If ${N_a} = [an:n \in N\} ,$ then ${N_5} \cap {N_7} = $
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B \cup D$