વર્તુળ $(x-\alpha)^2+(y-\beta)^2=50$ જ્યાં $\alpha, \beta>0$ ધ્યાને લો. જો વર્તુળ, એ રેખા $y+x=0$ ને બિંદુ $P$ આગળ સ્પર્શે, જેનું ઊગમબિંદુ થી અંતર $4 \sqrt{2}$ છે, તો $(\alpha+\beta)^2=$____________

  • [JEE MAIN 2024]
  • A

    $103$

  • B

    $102$

  • C

    $55$

  • D

    $100$

Similar Questions

બિંદુ $(2, 3)$ માંથી વર્તૂળ $2\ (x^2 + y^2) - 7x + 9y - 11 = 0$ પર દોરેલા સ્પર્શકની લંબાઈ :

રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :

$x$-અક્ષ સાથે $60°$ ના ખૂણે ઢળેલા વર્તૂળ $x^2 + y^2 = 25$ ના સ્પર્શકનું સમીકરણ :

રેખાઓ $12x - 5y - 17 = 0$ અને $24x - 10y + 44 = 0$ સમાન વર્તૂળના સ્પર્શકો તો વર્તૂળની ત્રિજ્યા :

બિંદુ$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right)$ માંથી વર્તૂળ $x^2 + y^2 = 9$ ના અભિલબનું સમીકરણ....