$\Delta ACB$ लीजिए जिसका कोण $C$ समकोण है जिसमें $AB =29$ इकाई $, BC =21$ इकाई और $\angle ABC =\theta$ $($ देखिए आकृति $)$ हैं तो निम्नलिखित के मान ज्ञात कीजिए।
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$.
In $\Delta ACB ,$ we have
$AC=\sqrt{ AB ^{2}- BC ^{2}}=\sqrt{(29)^{2}-(21)^{2}}$
$=\sqrt{(29-21)(29+21)}=\sqrt{(8)(50)}=\sqrt{400}=20$ units
So, $\sin \theta=\frac{A C}{A B}=\frac{20}{29}, \cos \theta=\frac{B C}{A B}=\frac{21}{29}$
Now,
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{20}{29}\right)^{2}+\left(\frac{21}{29}\right)^{2}=\frac{20^{2}+21^{2}}{29^{2}}=\frac{400+441}{841}=1$
and
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}-\left(\frac{20}{29}\right)^{2}=\frac{(21+20)(21-20)}{29^{2}}=\frac{41}{841}$
मान निकालिए :
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
$\Delta ABC$ में, जिसका कोण $B$ समकोण है , $AB =24\, cm$ और $BC =7\, cm$ है। निम्नलिखित का मान ज्ञात कीजिए :
$(i)$ $\sin A , \cos A$
$(ii)$ $\sin C, \cos C$
यदि $\tan A =\cot B ,$ तो सिद्ध कीजिए कि $A + B =90^{\circ}$
$(\sec A+\tan A)(1-\sin A)=..........$
$\Delta PQR$ में, जिसका कोण $Q$ समकोण है $($ देखिए आकृति $), PQ =3 \,cm$ और $PR =6\, cm$ है। $\angle QPR$ और $\angle PRQ$ ज्ञात कीजिए।