Classify the following as linear, quadratic and cubic polynomials :

$(i)$ $x^{2}+x$

$(ii)$ $x-x^{3}$

$(iii)$ $y+y^{2}+4$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$ $x^{2}+x$

$\because $  The degree of $x ^{2}+ x$ is  $2$  .                  $\therefore $ It is a quadratic polynomial.

$(ii)$ $x-x^{3}$

$\because$ The degree of $x-x^{3}$ is $3$.                        $\therefore$ It is a cubic polynomial.

$(iii)$ $y+y^{2}+4$

$\because$ The degree of $y+y^{2}+4$ is $2$                  $\therefore$ It is a quadratic polynomial.

Similar Questions

Find the remainder when $x^4+x^3-2x^2+x+1$ is divided by $x -1$.

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=x^{3}+3 x^{2}+3 x+1$,  $g(x)=x+2$.

Determine which of the following polynomials has $(x + 1)$ a factor : $x^{3}+x^{2}+x+1$.

Evaluate the following products without multiplying directly : $104 \times 96$

Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$