Classify the following as linear, quadratic and cubic polynomials :

$(i)$ $x^{2}+x$

$(ii)$ $x-x^{3}$

$(iii)$ $y+y^{2}+4$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$ $x^{2}+x$

$\because $  The degree of $x ^{2}+ x$ is  $2$  .                  $\therefore $ It is a quadratic polynomial.

$(ii)$ $x-x^{3}$

$\because$ The degree of $x-x^{3}$ is $3$.                        $\therefore$ It is a cubic polynomial.

$(iii)$ $y+y^{2}+4$

$\because$ The degree of $y+y^{2}+4$ is $2$                  $\therefore$ It is a quadratic polynomial.

Similar Questions

Find the value of each of the following polynomials at the indicated value of variables :  $q(y)=3 y^{3}-4 y+\sqrt{11}$ at $y=2$

Evaluate the following using suitable identities : $(998)^{3}$

Use suitable identities to find the products : $(x+8)(x-10)$

Find the value of the polynomial $5x -4x^2+ 3$ at $x = 2$.

Factorise : $49 a^{2}+70 a b+25 b^{2}$