Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=x^{3}+3 x^{2}+3 x+1$,  $g(x)=x+2$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have $p ( x )= x ^{3}+3 x ^{2}+3 x +1$ and $g ( x )= x +2$

                        $p (-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$

                        $=-8+3(4)+(-6)+1=-8+12-6+1$

                       $=-8-6+12+1=-14+13=-1$

 $\therefore $  $p(-2) \neq 0$

Thus, $g(x)$ is not a factor of $p(x)$.

Similar Questions

Factorise : $2 y^{3}+y^{2}-2 y-1$

Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x-\frac{1}{2}$

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?$\boxed{\rm {Volume}\,:12 k y^{2}+8 k y-20 k}$

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=x^{3}-4 x^{2}+x+6$, $g(x)=x-3$.

Write the degree of each of the following polynomials :

$(i)$ $5 t-\sqrt{7}$

$(ii)$ $3$