Choose the correct statement about two circles whose equations are given below
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-22 x-10 y+137=0$
circles have same centre
circles have no meeting point
circles have only one meeting point
circles have two meeting points
Let $S = 0$ is the locus of centre of a variable circle which intersect the circle $x^2 + y^2 -4x -6y = 0$ orthogonally at $(4, 6)$ . If $P$ is a variable point of $S = 0$ , then least value of $OP$ is (where $O$ is origin)
Number of common tangents to the circles
$x^2 + y^2 -2x + 4y -4 = 0$ and
$x^2 + y^2 -8x -4y + 16 = 0 $ is-
If a circle $C,$ whose radius is $3,$ touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point $(2, 2),$ then the length of the intercept cut by circle $c,$ on the $x-$ axis is equal to
The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is
If the equation of the common tangent at the point $(1, -1)$ to the two circles, each of radius $13$, is $12x + 5y -7 = 0$, then the centre of the two circles are