If a circle $C,$  whose radius is $3,$ touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point $(2, 2),$  then the length of the intercept cut by circle $c,$  on the $x-$ axis is equal to

  • [JEE MAIN 2018]
  • A

    $\sqrt 5$

  • B

    $2\sqrt 3$

  • C

    $3\sqrt 2$

  • D

    $2\sqrt 5$

Similar Questions

A circle passes through the origin and has its centre on $y = x$. If it cuts ${x^2} + {y^2} - 4x - 6y + 10 = 0$ orthogonally, then the equation of the circle is

The circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ bisects the circumference of the circle ${x^2} + {y^2} + 2g'x + 2f'y + c' = 0$, if

If the line $x\, cos \theta + y\, sin \theta = 2$ is the equation of a transverse common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6 \sqrt{3} \,x - 6y + 20 = 0$, then the value of $\theta$ is :

The equation of the circle which passes through the point of intersection of circles ${x^2} + {y^2} - 8x - 2y + 7 = 0$ and ${x^2} + {y^2} - 4x + 10y + 8 = 0$ and having its centre on $y$ - axis, will be

Two tangents are drawn from a point $P$ on radical axis to the two circles touching at $Q$ and $R$ respectively then triangle formed by joining $PQR$ is