Let $S = 0$ is the locus of centre of a variable circle which intersect the circle $x^2 + y^2 -4x -6y = 0$ orthogonally at $(4, 6)$ . If $P$ is a variable point of $S = 0$ , then least value of $OP$ is (where $O$ is origin)
$\sqrt {13} $
$2\sqrt {13} $
$10$
$13$
Choose the correct statement about two circles whose equations are given below
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-22 x-10 y+137=0$
Let
$A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$
$B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\} \text { and }$
$C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$
Then the minimum value of $|r|$ such that $A \cup B \subseteq C$ is equal to:
The circles $x^2 + y^2 + 2x -2y + 1 = 0$ and $x^2 + y^2 -2x -2y + 1 = 0$ touch each other :-
The two circles ${x^2} + {y^2} - 2x + 22y + 5 = 0$ and ${x^2} + {y^2} + 14x + 6y + k = 0$ intersect orthogonally provided $k$ is equal to
The point of contact of the given circles ${x^2} + {y^2} - 6x - 6y + 10 = 0$ and ${x^2} + {y^2} = 2$, is