जाँच कीजिए कि $g(x), p(x)$ का एक गुणनखंड है या नहीं, जहाँ $p(x)=8 x^{3}-6 x^{2}-4 x+3$ और $g(x)=\frac{x}{3}-\frac{1}{4}$ है।
$g(x)=\frac{x}{3}-\frac{1}{4}=0$ gives $x=\frac{3}{4}$
$g(x)$ will be a factor of $p(x)$ if $p\left(\frac{3}{4}\right)=0$ (Factor theorem)
Now,$p\left(\frac{3}{4}\right)=8\left(\frac{3}{4}\right)^{3}-6\left(\frac{3}{4}\right)^{2}-4\left(\frac{3}{4}\right)+3$
$=8 \times \frac{27}{64}-6 \times \frac{9}{16}-3+3=0$
Since, $p\left(\frac{3}{4}\right)=0,$ So, $g(x)$ is a factor of $p(x)$
निम्नलिखित को एक अचर, रैखिक, द्विघात और त्रिघात बहुपदों के रूप में वर्गीकृत कीजिए
$t^{2}$
गुणनखंड कीजिए
$x^{3}-6 x^{2}+11 x-6$
घनों को ज्ञात किए बिना गुणनखंड कीजिए
$(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$
$(x+3)^{3}$ के प्रसार में $x$ का गुणांक है
$\sqrt{2}$ निम्नलिखित घात का एक बहुपद है