Check whether $g(x)$ is a factor of $p(x)$ or not, where
$p(x)=8 x^{3}-6 x^{2}-4 x+3, \quad g(x)=\frac{x}{3}-\frac{1}{4}$
$g(x)=\frac{x}{3}-\frac{1}{4}=0$ gives $x=\frac{3}{4}$
$g(x)$ will be a factor of $p(x)$ if $p\left(\frac{3}{4}\right)=0$ (Factor theorem)
Now,$p\left(\frac{3}{4}\right)=8\left(\frac{3}{4}\right)^{3}-6\left(\frac{3}{4}\right)^{2}-4\left(\frac{3}{4}\right)+3$
$=8 \times \frac{27}{64}-6 \times \frac{9}{16}-3+3=0$
Since, $p\left(\frac{3}{4}\right)=0,$ So, $g(x)$ is a factor of $p(x)$
Degree of the zero degree polynomial is
Expand
$(6 x-7)^{2}$
With the help of the remainder theorem, find the remainder when the polynomial $x^{3}+x^{2}-26 x+24$ is divided by each of the following divisors
$x+1$
Find the value of the polynomial $x^{2}-7 x+12$ at.
$x=1$
Find $p(0), p(1), p(-2)$ for the following polynomials:
$p(x)=10 x-4 x^{2}-3$