At which point on $y$-axis the line $x = 0$ is a tangent to circle ${x^2} + {y^2} - 2x - 6y + 9 = 0$
$(0, 1)$
$(0, 2)$
$(0, 3)$
$(0, 4)$
If the line $3x + 4y - 1 = 0$ touches the circle ${(x - 1)^2} + {(y - 2)^2} = {r^2}$, then the value of $r$ will be
The set of all values of $a^2$ for which the line $x + y =0$ bisects two distinct chords drawn from a point $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ on the circle $2 x ^2+2 y ^2-(1+ a ) x -(1- a ) y =0$ is equal to:
The line $lx + my + n = 0$ is normal to the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$, if
If variable point $(x, y)$ satisfies the equation $x^2 + y^2 -8x -6y + 9 = 0$ , then range of $\frac{y}{x}$ is
The centres of two circles $C_1$ and $C_2$ each of unit radius are at a distance of $6$ units from each other. Let $P$ be the mid point of the line segment joining the centres of $C_1$ and $C_2$ and $C$ be a circle touching circles $C_1$ and $C_2$ externally. If a common tangent to $C_1$ and $C$ passing through $P$ is also a common tangent to $C_2$ and $C$, then the radius of the circle $C$ is