If variable point $(x, y)$ satisfies the equation $x^2 + y^2 -8x -6y + 9 = 0$ , then range of $\frac{y}{x}$ is
$\left[ { - \frac{7}{{24}},\frac{7}{{24}}} \right]$
$\left[ { - \frac{7}{{24}},\infty } \right)$
$\left[ {\frac{7}{{24}},\infty } \right)$
$\left( { - \infty ,\infty } \right)$
If the line $y = mx + c$be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then the point of contact is
The equation of circle which touches the axes of coordinates and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is ${x^2} + {y^2} - 2cx - 2cy + {c^2} = 0$, where $c$ is
Line $y = x + a\sqrt 2 $ is a tangent to the circle ${x^2} + {y^2} = {a^2}$ at
If the tangent at $\left( {1,7} \right)$ to the curve ${x^2} = y - 6$ touches the circle ${x^2} + {y^2} + 16x + 12y + c = 0$ then the value of $c$ is:
The tangent at $P$, any point on the circle ${x^2} + {y^2} = 4$, meets the coordinate axes in $A$ and $B$, then