The centres of two circles $C_1$ and $C_2$ each of unit radius are at a distance of $6$ units from each other. Let $P$ be the mid point of the line segment joining the centres of $C_1$ and $C_2$ and $C$ be a circle touching circles $C_1$ and $C_2$ externally. If a common tangent to $C_1$ and $C$ passing through $P$ is also a common tangent to $C_2$ and $C$, then the radius of the circle $C$ is
$3$
$4$
$6$
$8$
Let $A B$ be a chord of length $12$ of the circle $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ If tangents drawn to the circle at points $A$ and $B$ intersect at the point $P$, then five times the distance of point $P$ from chord $AB$ is equal to$.......$
The equations of the tangents to the circle ${x^2} + {y^2} = {a^2}$ parallel to the line $\sqrt 3 x + y + 3 = 0$ are
If the straight line $y = mx + c$ touches the circle ${x^2} + {y^2} - 2x - 4y + 3 = 0$ at the point $(2, 3)$, then $c =$
If the line $lx + my = 1$ be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then the locus of the point $(l, m)$ is
Let a circle $C$ of radius $5$ lie below the $x$-axis. The line $L_{1}=4 x+3 y-2$ passes through the centre $P$ of the circle $C$ and intersects the line $L _{2}: 3 x -4 y -11=0$ at $Q$. The line $L _{2}$ touches $C$ at the point $Q$. Then the distance of $P$ from the line $5 x-12 y+51=0$ is