Are the following statements true or false ? Give reasons for your answers.

$(i)$ Every whole number is a natural number.

$(ii)$ Every integer is a rational number.

$(iii)$ Every rational number is an integer.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$ False, because zero is a whole number but not a natural number.

$(ii)$ True, because every integer m can be expressed in the form $\frac {m }{1}$ , and so it is a rational number.

$(iii)$ False, because $\frac{3}{5}$ is not an integer.

Similar Questions

Locate $\sqrt 2$ on the number line.

Simplify the following expressions :

$(i)$ $(5+\sqrt{7})(2+\sqrt{5})$

$(ii)$ $(5+\sqrt{5})(5-\sqrt{5})$

$(iii)$ $(\sqrt{3}+\sqrt{7})^{2}$

$(iv)$ $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$

Add $2 \sqrt{2}+5 \sqrt{3}$ and $\sqrt{2}-3 \sqrt{3}$

Rationalise the denominators of the following :

$(i)$ $\frac{1}{\sqrt{7}}$

$(ii)$ $\frac{1}{\sqrt{7}-\sqrt{6}}$

$(iii)$ $\frac{1}{\sqrt{5}+\sqrt{2}}$

$(iv)$ $\frac{1}{\sqrt{7}-2}$

Show how $\sqrt 5$ can be represented on the number line.