$+\sigma_{\mathrm{s}} \mathrm{C} / \mathrm{m}^2$ જેટલી નિયમિત પૃષ્ઠ વિદ્યુતભાર ધનતા ધરાવતી એક અનંત સમતલ તક્તિને $x-y$ સમતલમાં મૂકવામાં આવે છે. બીજા એક $+\lambda_{\mathrm{e}} \mathrm{C} / \mathrm{m}$ જેટલી નિયમિત રેખીય વિધુતભાર ધનતા ધરાવતા અનંત લંબાઈના લાંબા તાર ને $z=4 \mathrm{~m}$ સમતલ અને $y$-અક્ષને સમાંતર રાખવામાં આવે છે. જો મૂલ્યોમાં $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ હોય તો $(0,0,2)$ સ્થાન આગળ તક્તિ ( પૃષ્ઠ) વિદ્યુતભાર અને રેખીય વિધુત ભાર ને કારણે મળતા વિધુતક્ષેત્રનાં મૂલ્યોનો ગુણોતર. . . . . છે.
$16$
$20$
$23$
$30$
$Z$ પરમાણું ક્રમાંક ધરાવતા પરમાણુને $R$ ત્રીજ્યાના ગોળાની અંદર એકસમાન વિતરીત ઋણ વિદ્યુતભારના વિતરણ વડે ઘેરાયેલો અને કેન્દ્ર પાસે ઘન વિદ્યુતભાર ધરાવે છે તેમ ધ્યાનમાં લો. પરમાણુની અંદર કેન્દ્રથી $r$ અંતરે આવેલા બિંદુુએ વિદ્યુતક્ષેત્ર કેટલું છે?
ધારો કે એક નક્કર ગોળાની ત્રિજ્યા $R$ અને તેના પરનો વિદ્યુતભાર $Q$ છે. આ ગોળાનું વિદ્યુત ઘનતા વિતરણ $\rho( r )=\frac{ Q }{\pi R ^{4}} \cdot r$ સૂત્ર વડે અપાય છે. આ ગોળાની અંદર ગોળાના કેન્દ્રથી $r _{1}$ અંતરે આવેલા બિંદુ $P$ આગળ વિદ્યુતક્ષેત્રનું મૂલ્ય કેટલું થાય?
કુલંબના નિયમ પરથી ગાઉસનો પ્રમેય સમજાવો.
$R$ ત્રિજયાના ગોળીય કવચમાં કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?