$+\sigma_{\mathrm{s}} \mathrm{C} / \mathrm{m}^2$ જેટલી નિયમિત પૃષ્ઠ વિદ્યુતભાર ધનતા ધરાવતી એક અનંત સમતલ તક્તિને $x-y$ સમતલમાં મૂકવામાં આવે છે. બીજા એક $+\lambda_{\mathrm{e}} \mathrm{C} / \mathrm{m}$ જેટલી નિયમિત રેખીય વિધુતભાર ધનતા ધરાવતા અનંત લંબાઈના લાંબા તાર ને $z=4 \mathrm{~m}$ સમતલ અને $y$-અક્ષને સમાંતર રાખવામાં આવે છે. જો મૂલ્યોમાં $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ હોય તો $(0,0,2)$ સ્થાન આગળ તક્તિ ( પૃષ્ઠ) વિદ્યુતભાર અને રેખીય વિધુત ભાર ને કારણે મળતા વિધુતક્ષેત્રનાં મૂલ્યોનો ગુણોતર. . . . . છે.

  • [JEE MAIN 2024]
  • A

    $16$

  • B

    $20$

  • C

    $23$

  • D

    $30$

Similar Questions

$Z$ પરમાણું ક્રમાંક ધરાવતા પરમાણુને $R$ ત્રીજ્યાના ગોળાની અંદર એકસમાન વિતરીત ઋણ વિદ્યુતભારના વિતરણ વડે ઘેરાયેલો અને કેન્દ્ર પાસે ઘન વિદ્યુતભાર ધરાવે છે તેમ ધ્યાનમાં લો. પરમાણુની અંદર કેન્દ્રથી $r$ અંતરે આવેલા બિંદુુએ વિદ્યુતક્ષેત્ર કેટલું છે?

ધારો કે એક નક્કર ગોળાની ત્રિજ્યા $R$ અને તેના પરનો વિદ્યુતભાર $Q$ છે. આ ગોળાનું વિદ્યુત ઘનતા વિતરણ $\rho( r )=\frac{ Q }{\pi R ^{4}} \cdot r$ સૂત્ર વડે અપાય છે. આ ગોળાની અંદર ગોળાના કેન્દ્રથી $r _{1}$ અંતરે આવેલા બિંદુ $P$ આગળ વિદ્યુતક્ષેત્રનું મૂલ્ય કેટલું થાય?

  • [AIEEE 2009]

કુલંબના નિયમ પરથી ગાઉસનો પ્રમેય સમજાવો.

પૃષ્ઠભાર ધનતા $+\sigma$ ધરાવતી સમાન રીતે ભારિત અનંત સમતલીય તકતી $S$ ના વિદ્યુત ક્ષેત્રની અસર હેડળ ઇલેકટ્રોન ગતિ કરે છે. તે $t=0$ સમયે $S$ થી $1 \mathrm{~m}$ ના અંતરે છે અને $1 \mathrm{~m} / \mathrm{s}$ ઝડપ ધરાવે છે. જો ઇલેકટ્રોન $t=1$ વખતે $s$ પર અથડાય ત્યારે $\sigma$ નું મહત્તમ મૂલ્ય $\alpha\left[\frac{m \epsilon_0}{e}\right] \frac{C}{m^2}$ થાય છ, તો $\alpha$ નું મૂલ્ય છે.

  • [JEE MAIN 2024]

$R$ ત્રિજયાના ગોળીય કવચમાં કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?