An infinite plane sheet of charge having uniform surface charge density $+\sigma_5 \mathrm{C} / \mathrm{m}^2$ is placed on $\mathrm{x}-\mathrm{y}$ plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e \mathrm{C} / \mathrm{m}$ is placed at $z=4 \mathrm{~m}$ plane and parallel to $y$-axis. If the magnitude values $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ then at point $(0,0,2)$, the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi \sqrt{\mathrm{n}}: 1$. The value of $n$ is

  • [JEE MAIN 2024]
  • A

    $16$

  • B

    $20$

  • C

    $23$

  • D

    $30$

Similar Questions

The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.

 List-$I$  List-$II$
$E$ is independent of $d$ A point charge $Q$ at the origin
$E \propto \frac{1}{d}$ A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$.
$E \propto \frac{1}{d^2}$ An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$
$E \propto \frac{1}{d^3}$ Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$
  plane with uniform surface charge density

 

  • [IIT 2018]

A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the hole is $\left(\sigma / 2 \varepsilon_{0}\right) \hat{ n },$ where $\hat{ n }$ is the unit vector in the outward normal direction, and $\sigma$ is the surface charge density near the hole.

A conducting sphere of radius $10\, cm$ has unknown charge. If the electric field at a distance $20\, cm$ from the centre of the sphere is $1.2 \times 10^3\, N\, C^{-1}$ and points radially inwards. The net charge on the sphere is

$\sigma$ is the uniform surface charge density of a thin spherical shell of radius $R$. The electric field at any point on the surface of the spherical shell is:

  • [JEE MAIN 2024]

Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities $(\sigma )$ is