Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities $(\sigma )$ is
$\frac{\sigma }{{2{\varepsilon _0}}}$
$\frac{\sigma }{{{\varepsilon _0}}}$
Zero
$\frac{{2\sigma }}{{{\varepsilon _0}}}$
Consider the force $F$ on a charge $'q'$ due to a uniformly charged spherical shell of radius $R$ carrying charge $Q$ distributed uniformly over it. Which one of the following statements is true for $F,$ if $'q'$ is placed at distance $r$ from the centre of the shell $?$
An infinitely long positively charged straight thread has a linear charge density $\lambda \mathrm{Cm}^{-1}$. An electron revolves along a circular path having axis along the length of the wire. The graph that correctly represents the variation of the kinetic energy of electron as a function of radius of circular path from the wire is :
Obtain the formula for the electric field due to a long thin wire of uniform linear charge density $E$ without using Gauss’s law.
The volume charge density of a sphere of radius $6 \,m$ is $2 \,\mu cm ^{-3}$. The number of lines of force per unit surface area coming out from the surface of the sphere is $....\times 10^{10}\, NC ^{-1}$. [Given : Permittivity of vacuum $\left.\epsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1}- m ^{-2}\right]$
A conducting sphere of radius $10 \;cm$ has an unknown charge. If the electric field $20\; cm$ from the centre of the sphere is $1.5 \times 10^{3} \;N / C$ and points radially inward, what is the net charge (in $n\;C$) on the sphere?