$\sigma$ is the uniform surface charge density of a thin spherical shell of radius $R$. The electric field at any point on the surface of the spherical shell is:
$\sigma / \epsilon_0 R$
$\sigma / 2 \in_0$
$\sigma / \epsilon_0$
$\sigma / 4 \in_0$
Obtain the expression of electric field by ......
$(i)$ infinite size and with uniform charge distribution.
$(ii)$ thin spherical shell with uniform charge distribution at a point outside it.
$(iii)$ thin spherical shell with uniform charge distribution at a point inside it.
An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho$. It has a spherical cavity of radius $R / 2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2 \ R$ from the axis of the cylinder, is given by the expression $\frac{23 \rho R }{16 k \varepsilon_0}$. The value of $k$ is
Let $\rho (r)\, = \frac{Q}{{\pi {R^4}}}\,r$ be the volume charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point $'p'$ inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is
A hollow insulated conducting sphere is given a positive charge of $10\,\mu \,C$. ........$\mu \,C{m^{ - 2}}$ will be the electric field at the centre of the sphere if its radius is $2$ meters
Consider a metal sphere of radius $R$ that is cut in two parts along a plane whose minimum distance from the sphere's centre is $h$. Sphere is uniformly charged by a total electric charge $Q$. The minimum force necessary to hold the two parts of the sphere together, is