एक अनन्त लम्बा रैखिक आवेश $2\,cm$ की दूरी पर $7.182 \times {10^8}\,N/C$ का विद्युत क्षेत्र उत्पन कर रहा है। रेखीय आवेश घनत्व होगा

  • A

    $7.27 \times {10^{ - 4}}\,C/m$

  • B

    $7.98 \times {10^{ - 4}}\,C/m$

  • C

    $7.11 \times {10^{ - 4}}\,C/m$

  • D

    $7.04 \times {10^{ - 4}}\,C/m$

Similar Questions

त्रिज्या $R$ के एक समान गोलीय आयतन आवेश वितरण (uniform spherical volume charge distribution) को लीजिए। निम्नलिखित में से कौन सा ग्राफ गोलक (sphere) के मध्य से $r$ की दूरी पर विद्युत क्षेत्र (electric field) $E$ का परिमाण (magnitude) निरूपित करता है ?

  • [KVPY 2010]

$10 \,cm$ त्रिज्या के चालक गोले पर अज्ञात परिणाम का आवेश है। यद् गोले के केंद्र से $20\, cm$ दूरी पर विध्यूत क्षेत्र $1.5 \times 10^{3}\, N / C$ त्रिज्यत: अंतर्मुखी (radially inward) है तो गोले पर नेट आवेश कितना है?

दो अनन्त लम्बाई के समान्तर तार जिन पर रेखीय आवेश घनत्व क्रमश: ${\lambda _1}$ और ${\lambda _2}$ हैं, $R$ मीटर की दूरी पर रखे हैं। उनमें से किसी एक की एकांक लम्बाई पर बल होगा $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$

माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें

  • [JEE MAIN 2023]

चित्रानुसार त्रिज्या $R$ तथा आवेश $q$ का एक ठोस धात्वीय गोला $a$ आन्तरिक त्रिज्या तथा $b$ बाह्य त्रिज्या के गोलीय कोश के अन्दर समकेन्द्रीय रखा है। केन्द्र $O$ से $r$ दूरी के फलन के रूप में विधुत क्षेत्र  $\overrightarrow{ E }$ का निकटतम विचरण होगा।

  • [JEE MAIN 2021]