An infinite line charge produce a field of $7.182 \times {10^8}\,N/C$ at a distance of $2\, cm$. The linear charge density is
$7.27 \times {10^{ - 4}}\,C/m$
$7.98 \times {10^{ - 4}}\,C/m$
$7.11 \times {10^{ - 4}}\,C/m$
$7.04 \times {10^{ - 4}}\,C/m$
A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the hole is $\left(\sigma / 2 \varepsilon_{0}\right) \hat{ n },$ where $\hat{ n }$ is the unit vector in the outward normal direction, and $\sigma$ is the surface charge density near the hole.
A spherically symmetric charge distribution is considered with charge density varying as
$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
Where, $r ( r < R )$ is the distance from the centre $O$ (as shown in figure). The electric field at point $P$ will be.
A solid ball of radius $R$ has a charge density $\rho $ given by $\rho = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ for $0 \leq r \leq R$. The electric field outside the ball is
A solid sphere of radius $R$ has a charge $Q$ distributed in its volume with a charge density $\rho=\kappa r^a$, where $\kappa$ and $a$ are constants and $r$ is the distance from its centre. If the electric field at $r=\frac{R}{2}$ is $\frac{1}{8}$ times that at $r=R$, find the value of $a$.
Obtain the expression of electric field by a straight wire of infinite length and with linear charge density $'\lambda '$.