ऊर्जा घनत्व का व्यंजक निम्नवत है $u =\frac{\alpha}{\beta} \sin \left(\frac{\alpha x }{ kt }\right)$, जहाँ $\alpha$ एवं $\beta$ स्थिरांक हैं, $x$ विस्थापन है, $k$ वोल्टजमैन स्थिरांक है एवं $t$ तापमान है। $\beta$ की विमाऐं होंगी :
$\left[ ML ^{2} T ^{-2} \theta^{-1}\right]$
$\left[ M ^{0} L ^{2} T ^{-2}\right]$
$\left[ M ^{0} L ^{0} T ^{0}\right]$
$\left[ M ^{0} L ^{2} T ^{0}\right]$
यदि वेग $v,$ त्वरण $A$ तथा बल $F$ को मूल राशियाँ मान लिया जाए, तो कोणीय संवेग का $v,\,A$ और $F$ के पदों में विमीय सूत्र होगा
$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
$m$ द्रव्यमान एवं $r$ त्रिज्या की एक गोलीय वस्तु $\eta $ श्यानता के माध्यम में गिर रही है। वह समय जिसमें वस्तु का वेग शून्य से बढ़कर सीमान्त (टर्मिनल) वेग $v$ का $0.63$ गुना हो जाता है, समय नियतांक $\tau $ कहलाता है। विमीय रुप से $\tau $ को किसके द्वारा व्यक्त कर सकते हैं
पानी में उत्पन्न तरंग की चाल $v=\lambda^a g^b \rho^c$ द्वारा दी गई है, जहाँ $\lambda, g$ एवं $\rho$ क्रमशः तरंग का तरंगदैर्ध्य, गुरुत्वीय त्वरण एवं पानी का घनत्व हैं। $a, b$ एवं $c$ का मान क्रमश: है:
यदि इलेक्ट्रॉन-आवेश $e$, इलेक्ट्रॉन-द्रव्यमान $m$, निर्वात् में प्रकाश के वेग $c$ तथा प्लाँक स्थिरांक $h$, को मूल राशियाँ मान लिया जाय तो, निर्वात् की चुम्बकशीलता $\mu_{0}$ का मात्रक होगा :