According to Newton, the viscous force acting between liquid layers of area $A$ and velocity gradient $\Delta v/\Delta z$ is given by $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ where $\eta $ is constant called coefficient of viscosity. The dimension of $\eta $ are
$[M{L^2}{T^{ - 2}}]$
$[M{L^{ - 1}}{T^{ - 1}}]$
$[M{L^{ - 2}}{T^{ - 2}}]$
$[{M^0}{L^0}{T^0}]$
The volume of a liquid flowing out per second of a pipe of length $l$ and radius $r$ is written by a student as $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ where $p$ is the pressure difference between the two ends of the pipe and $\eta $ is coefficent of viscosity of the liquid having dimensional formula $[M^1L^{-1}T^{-1}] $. Check whether the equation is dimensionally correct.
The Bernoulli's equation is given by $p +\frac{1}{2} \rho v ^{2}+ h \rho g = k$
where $p =$ pressure, $\rho =$ density, $v =$ speed, $h =$ height of the liquid column, $g=$ acceleration due to gravity and $k$ is constant. The dimensional formula for $k$ is same as that for
If velocity $v$, acceleration $A$ and force $F$ are chosen as fundamental quantities, then the dimensional formula of angular momentum in terms of $v,\,A$ and $F$ would be
Write the dimensions of $a/b$ in the relation $P = \frac{{a - {t^2}}}{{bx}}$ , where $P$ is pressure, $x$ is the distance and $t$ is the time
The dimensions of $\frac{\alpha}{\beta}$ in the equation $F=\frac{\alpha-t^2}{\beta v^2}$, where $F$ is the force, $v$ is velocity and $t$ is time, is ..........