The volume of a liquid flowing out per second of a pipe of length $l$ and radius $r$ is written by a student as $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ where $p$ is the pressure difference between the two ends of the pipe and $\eta $ is coefficent of viscosity of the liquid having dimensional formula $[M^1L^{-1}T^{-1}] $. Check whether the equation is dimensionally correct.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The volume of a liquid flowing out per second of a pipe is given by $\mathrm{V}=\frac{\pi}{8} \frac{p r^{4}}{\eta l}$

${[\mathrm{V}]=\frac{[\text { Volume }]}{[\mathrm{Time}]}=\frac{\left[\mathrm{L}^{3}\right]}{[\mathrm{T}]}=\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right]}$

${[p]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}$

${[\eta]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]}$

${[l]=[\mathrm{L}]}$

${[r]=[\mathrm{L}]}$

${[\mathrm{LHS}]=[\mathrm{V}]=\frac{\left[\mathrm{L}^{3}\right]}{[\mathrm{T}]}=\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right]}$

${[\mathrm{RHS}]=\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right] \times\left[\mathrm{L}^{4}\right]}{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right] \times[\mathrm{L}]}=\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right]}$

${[\mathrm{LHS}]=[\mathrm{RHS}]}$

Thus, equation is dimensionally correct.

Similar Questions

If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where  $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by

  • [AIPMT 2015]

The Martians use force $(F)$, acceleration $(A)$ and time $(T)$ as their fundamental physical quantities. The dimensions of length on Martians system are

Choose the correct match

List I 

List II

 $(i)$ Curie

 $(A)$ $ML{T^{ - 2}}$

 $(ii)$ Light year 

 $(B)$ $M$

 $(iii)$ Dielectric strength

 $(C)$ Dimensionless

 $(iv)$ Atomic weight

 $(D)$ $T$

 $(v)$ Decibel

 $(E)$ $M{L^2}{T^{ - 2}}$

 

 $(F)$ $M{T^{ - 3}}$

 

 $(G)$ ${T^{ - 1}}$

 

 $(H)$ $L$

 

 $(I)$ $ML{T^{ - 3}}{I^{ - 1}}$

 

 $(J)$ $L{T^{ - 1}}$

  • [IIT 1992]

$M{L^{ - 1}}{T^{ - 2}}$ represents

If the unit of force is $100\,N$, unit of length is $10\,m$ and unit of time is $100\,s$ , what is the unit of mass in this system of units ?