The volume of a liquid flowing out per second of a pipe of length $l$ and radius $r$ is written by a student as $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ where $p$ is the pressure difference between the two ends of the pipe and $\eta $ is coefficent of viscosity of the liquid having dimensional formula $[M^1L^{-1}T^{-1}] $. Check whether the equation is dimensionally correct.
The volume of a liquid flowing out per second of a pipe is given by $\mathrm{V}=\frac{\pi}{8} \frac{p r^{4}}{\eta l}$
${[\mathrm{V}]=\frac{[\text { Volume }]}{[\mathrm{Time}]}=\frac{\left[\mathrm{L}^{3}\right]}{[\mathrm{T}]}=\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right]}$
${[p]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}$
${[\eta]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]}$
${[l]=[\mathrm{L}]}$
${[r]=[\mathrm{L}]}$
${[\mathrm{LHS}]=[\mathrm{V}]=\frac{\left[\mathrm{L}^{3}\right]}{[\mathrm{T}]}=\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right]}$
${[\mathrm{RHS}]=\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right] \times\left[\mathrm{L}^{4}\right]}{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right] \times[\mathrm{L}]}=\left[\mathrm{L}^{3} \mathrm{~T}^{-1}\right]}$
${[\mathrm{LHS}]=[\mathrm{RHS}]}$
Thus, equation is dimensionally correct.
If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by
The Martians use force $(F)$, acceleration $(A)$ and time $(T)$ as their fundamental physical quantities. The dimensions of length on Martians system are
Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
$M{L^{ - 1}}{T^{ - 2}}$ represents